DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS B.Sc. (COMPUTER SCIENCE), B. Com (COMPUTER APPLICATION)

PROGRAMME OUTCOMES

At the end of the program students will have:

PO1: Essential Knowledge:

Comprehensive discipline knowledge and understanding of computer functionality various uses of applications, computer science involved in basic application working to creation and to apply their knowledge in practice.

PO2: Creative and critical thinking and problem-solving abilities:

Be effective problem solvers, able to apply critical and evidence-based thinking and to put in front the programming challenges in computer science and to conceive innovative responses to future challenges.

PO3: Teamwork and communication skills:

Be able to convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving goals.

PO4: Professionalism and leadership readiness:

Be able to engage in professional behavior and have the potential to take leadership roles in their chosen occupations and communities.

PO5: Intercultural and ethical competency:

Be responsible and effective global citizens whose personal values and practices are consistent with their roles as responsible members of society.

PO6: Social responsibility:

Be sensitive to and demonstrate experimental evidence which does not affect the society.

SPECIFIC PROGRAM OUTCOMES FOR B.Sc (COMPUTER SCIENCE), B. Com (COMPUTER APPLICATION)

SPO1: A student should be able to recall basics concepts in computer and should be able to work or operate.

- **SPO2:** A student should get adequate exposure to global and local concerns that explore them many aspects of computer science & applications.
- **SPO3:** Student is equipped with creative talent and power of communication necessary for various kinds of employment.
- **SPO4:** Student should be able to apply their skills and knowledge in practical's.
- **SPO5:** Enabling students to develop a positive attitude towards programming languages as an interesting & valuable subject of study.
- **SPO6:** Think in a critical manner.
- **SPO7:** Acquire good knowledge and understanding in advanced areas of computer science & applications chosen by the student from the given courses.
- **SPO8:** The skills and knowledge gained has intrinsic beauty, which also leads to proficiency. This can be utilized in modelling and solving real life problems.
- **SPO9:** To recognize patterns and to distinguish between essential and irrelevant aspects of problems.
- **SPO10:** Ability to share ideas and insights while seeking and benefitting from knowledge and insight of others. This helps them to learn behave responsibly in a rapidly changing interdependent society.
- **SPO11:** This Program will also help students to enhance their employability for jobs in research institutes,IT origination and teaching fields, scientific data analyst and in various other public and private companies.

DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS (2016-19) COURSE OUTCOMES

SEM-I PROGRAMMING IN C (2016-17)

After the completion of the course, Students will be able to

CO1: Understanding a functional hierarchical code organization.

CO2: Ability to define and manage data structures based on problem subject domain.

CO3: Ability to work with textual information, characters, and strings.

CO4: Ability to work with arrays of complex objects.

CO5: Understanding a concept of object thinking within the framework of functional model.

CO6: Understanding a concept of functional hierarchical code organization.

CO7: Understanding a defensive programming concept. Ability to handle possible errors during program execution.

SEM-II PROGRAMMING IN C++ (2016-17)

After the completion of the course, Students will be able to

CO1: an ability to incorporate exception handling in object-oriented programs.

CO2: an ability to use template classes and the STL library in C++.

CO3: an understanding of the concepts of OOPs including inheritance and polymorphism.

CO4: an ability to overload operators in C++.

CO5: an understanding of the difference between function overloading and function overriding.

SEM-II FUNDAMENTAL OF COMPUTERS (2016-17)

After the completion of the course, Students will be able to

CO1: Understanding the concept of input and output devices of Computers.

CO2: Learn the functional units and classify types of computers, how they process information and how individual computers interact with other computing systems and devices.

CO3: Understand an operating system and its working, and solve common problems related to operating systems.

CO4: Learn basic word processing, Spreadsheet and Presentation Graphics Software skills. CO5: Study to use the Internet safely, legally, and responsibly.

SEM-III DATA STRUCTURE (2017 – 18)

After the completion of the course, Students will be able to

CO1: Describe how arrays, records, linked structures, stacks, queues, trees, and graphs are represented in memory and used by algorithms.

CO2: Describe common applications for arrays, records, linked structures, stacks, queues, trees, and graphs.

CO3: Write programs that use arrays, records, linked structures, stacks, queues, trees, and graphs.

CO4: Demonstrate different methods for traversing trees.

CO5: Illustrate various technique to for searching, sorting and hashing.

CO6: Describe the concept of recursion, give examples of its use, describe how it can be implemented using a stack.

CO7: Discuss the computational efficiency of the principal algorithms for sorting, searching, and hashing.

CO8: Summarize different categories of data Structures.

SEM-III SciLab (SEC-1) (2017 – 18)

After the completion of the course, Students will be able to

CO1: Scilab environment and programming language.

CO2: Use decision making control statements like if, if else and loops (for, while) to develop programs.

CO3: Use data structures like list, struct and cell arrays available in scilab to manage and work with data.

CO4: Use 2D, 3D graphical functions to display and analyze data.

CO5: Understand about operations on figures and axes.

SEM-IV DATABASE MANAGEMENT SYSTEM (2017 -18)

After the completion of the course, Students will be able to

CO1: Understand the normalization of databases through various case studies.

CO2: Use of query optimization techniques, backup and recovery features of database management software.

CO3: Create a new database and administer the database management software.

CO4: Develop different web databases and object-oriented database management system.

CO5: Describe the usage of data mining tools.

SEM-IV SciLab (SEC-2) (2017 -18)

After the completion of the course, Students will be able to

CO1: Plot finite element analysis results in 2d or 3d.

CO2: Use scripts and functions to create object oriented modular programs to solve complex engineering problems.

CO3: Use mathematical functions to solve problems on vectors, matrices, polynomials, differential equations, and finite difference method.

CO4: Develop graphical user interface with basic controls like text box, combo box, labels, radio buttons and advanced controls like list table and many more using scilab gui module.

CO5: Use Scilab API interface module to develop and link external C/C++ programs with Scilab.

SEM-V PROGRAMMING IN JAVA (2018 - 19)

After the completion of the course, Students will be able to

CO1: To learn Object Oriented Programming language.

CO2: To learn database programming using Java.

CO3: To handle abnormal termination of a program using exception handling.

CO4: To create flat files.

CO5: To study web development concept using Servlet and JSP.

SEM-V PAPER-V OPERATING SYSTEM (DSE A) (2018-19)

After the completion of the course, Students will be able to

CO1: Understand the basics of operating systems like kernel, shell, types and views of operating systems.

CO2: Describe the various CPU scheduling algorithms and remove deadlocks.

CO3: Explain various memory management techniques and concept of thrashing.

CO4: Use disk management and disk scheduling algorithms for better utilization of external memory.

CO5: Recognize file system interface, protection, and security mechanisms.

CO6: Explain the various features of distributed OS like Unix, Linux, windows etc..

SEM-V PAPER -VI SOFTWARE ENGINEERING (DSE B) (2018 -19)

After the completion of the course, Students will be able to:

CO1: Plan a software engineering process life cycle, including the specification, design,

implementation, and testing of software systems that meet specification, performance, maintenance and quality requirements.

CO2: Able to elicit, analyze and specify software requirements through a productive working relationship with various stakeholders of the project.

CO3: Analyze and translate a specification into a design, and then realize that design practically, using an appropriate software engineering methodology.

CO4: Know how to develop the code from the design and effectively apply relevant standards and perform testing, and quality management and practice.

CO5: Able to use modern engineering tools necessary for software project management, time management and software reuse.

SEM-V PYTHON-1 (2018 -19)

After the completion of the course, Students will be able to

CO1: To understand why Python is a useful scripting language for developers.

CO2: To learn how to use lists, tuples, and dictionaries in Python programs.

CO3: To learn how to identify Python object types.

CO4: To learn how to use indexing and slicing to access data in Python programs.

CO5: To define the structure and components of a Python program.

CO6: To learn how to write loops and decision statements in Python.

CO7: To learn how to write functions and pass arguments in Python.

SEM-V INFORMATION TECHNOLOGY - (GE-1) (2018 -19)

After the completion of the course, Students will be able to

CO1: Design and develop software solutions for contemporary business environments by employing appropriate problem-solving strategies.

CO2: Configure and administer database servers to support contemporary business environments. CO3: Comprehend and resolve common desktop and network issues.

SEM-VI COMPUTER NETWORKS (2018 -19)

After the completion of the course, Students will be able to

CO1: Understand different network technologies and their application.

CO2: Be updated with different advanced network technologies that can be used to connect different networks.

CO3: Be familiar with various hardware and software that can help run a smooth network.

SEM -VI PAPER -VIII PHP WITH MySQL (DSE A) (2018 -19)

After the completion of the course, Students will be able to

CO1: Understand the animal cell lines, genetic manipulations of cells.

CO2: Understand commercial applications of cell culture.

CO3: Know about model organisms and their significance.

CO4: Understand about DNA micromanipulation.

CO5: Understand development in molecular markers.

SEM -VI PAPER -VIII WEB TECHNOLOGY (DSE B) (2018 -19)

After the completion of the course, Students will be able to

CO1: Explain the history of the internet and related internet concepts that are vital in understanding web development.

CO2: Discuss the insights of internet programming and implement complete application over the web.

CO3: Demonstrate the important HTML tags for designing static pages and separate design from content using Cascading Style sheet.

CO4: Utilize the concepts of JavaScript and Java

CO5: Use web application development software tools i.e. Ajax, PHP and XML etc. and identify the environments currently available on the market to design web sites.

SEM-VI SEC-4 PYTHON – 2 (2018 - 19)

After the completion of the course, Students will be able to

CO1: To learn how to build and package Python modules for reusability.

CO2: To learn how to read and write files in Python.

CO3: To learn how to design object-oriented programs with Python classes.

CO4: To learn how to use class inheritance in Python for reusability.

CO5: To learn how to use exception handling in Python applications for error handling.

CO6: To acquire programming skills in core Python.

CO7: To acquire Object Oriented Skills in Python

SEM-VI INFORMATION TECHNOLOGY – (GE-2) (2018 -19)

After the completion of the course, Students will be able to

CO1: Analyze common business functions and identify, design, and develop appropriate information technology solutions (in web, desktop, network, and/or database applications). CO2: Learn future technologies through acquired foundational skills and knowledge and employ them in new business environments.

CO3: Practice communication, problem solving and decision-making skills using appropriate technology and with the understanding of the business environment.

DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS (2020-23)

SEM-I PROGRAMMING IN C (2020 – 21)

After the completion of the course, Students will be able to

CO1: Understanding a functional hierarchical code organization.

CO2: Ability to define and manage data structures based on problem subject domain.

CO3: Ability to work with textual information, characters, and strings.

CO4: Ability to work with arrays of complex objects.

CO5: Understanding a concept of object thinking within the framework of functional model.

CO6: Understanding a concept of functional hierarchical code organization.

CO7: Understanding a defensive programming concept. Ability to handle possible errors during program execution.

SEM-II PROGRAMMING IN C++ (2020 -21)

After the completion of the course, Students will be able to

CO1: an ability to incorporate exception handling in object-oriented programs.

CO2: an ability to use template classes and the STL library in C++.

CO3: an understanding of the concepts of OOPs including inheritance and polymorphism.

CO4: an ability to overload operators in C++.

CO5: an understanding of the difference between function overloading and function overriding.

SEM-II FUNDAMENTAL OF COMPUTERS (AECC -2) (2020 -21)

After the completion of the course, Students will be able to

CO1: Understanding the concept of input and output devices of Computers.

CO2: Learn the functional units and classify types of computers, how they process information and how individual computers interact with other computing systems and devices.

CO3: Understand an operating system and its working, and solve common problems related to operating systems.

CO4: Learn basic word processing, Spreadsheet and Presentation Graphics Software skills.

CO5: Study to use the Internet safely, legally, and responsibly.

SEM-III DATA STRUCTURE USING C++ (2020 -21)

After the completion of the course, Students will be able to

CO1: Describe how arrays, records, linked structures, stacks, queues, trees, and graphs are represented in memory and used by algorithms.

CO2: Describe common applications for arrays, records, linked structures, stacks, queues, trees, and graphs.

CO3: Write programs that use arrays, records, linked structures, stacks, queues, trees, and graphs.

CO4: Demonstrate different methods for traversing trees.

CO5: Illustrate various technique to for searching, Sorting and hashing.

CO6: Describe the concept of recursion, give examples of its use, describe how it can be implemented using a stack.

CO7: Discuss the computational efficiency of the principal algorithms for sorting, searching, and hashing.

CO8: Summarize different categories of data Structures.

SEM-III PYTHON -1 (SEC - 2) (2020 -21)

After the completion of the course, Students will be able to

CO1: To understand why Python is a useful scripting language for developers.

CO2: To learn how to use lists, tuples, and dictionaries in Python programs.

CO3: To learn how to identify Python object types.

CO4: To learn how to use indexing and slicing to access data in Python programs.

CO5: To define the structure and components of a Python program.

CO6: To learn how to write loops and decision statements in Python.

CO7: To learn how to write functions and pass arguments in Python.

SEM-IV DATABASE MANAGEMENT SYSTEMS (2020-21)

After the completion of the course, Students will be able to

CO1: Understand the normalization of databases through various case studies.

CO2: Use of query optimization techniques, backup and recovery features of database management software.

CO3: Create a new database and administer the database management software.

CO4: Develop different web databases and object-oriented database management system.

CO5: Describe the usage of data mining tools.

SEM-IV PYTHON -2 (SEC - 4) (2020 -21)

After the completion of the course, Students will be able to

CO1: To learn how to build and package Python modules for reusability.

CO2: To learn how to read and write files in Python.

CO3: To learn how to design object-oriented programs with Python classes.

CO4: To learn how to use class inheritance in Python for reusability.

CO5: To learn how to use exception handling in Python applications for error handling.

CO6: To acquire programming skills in core Python.

CO7: To acquire Object Oriented Skills in Python

SEM-V PROGRAMMING IN JAVA (2022 -23)

After the completion of the course, Students will be able to

CO1: To learn Object Oriented Programming language.

CO2: To learn database programming using Java.

CO3: To handle abnormal termination of a program using exception handling.

CO4: To create flat files.

CO5: To study web development concept using Servlet and JSP.

SEM-V INFORMATION TECHNOLOGIES (GE) (2022 -23)

After the completion of the course, Students will be able to

CO1: Design and develop software solutions for contemporary business environments by employing appropriate problem-solving strategies.

CO2: Configure and administer database servers to support contemporary business environments.

CO3: Comprehend and resolve common desktop and network issues.

CO4: Analyze common business functions and identify, design, and develop appropriate information technology solutions (in web, desktop, network, and/or database applications).

CO5: Learn future technologies through acquired foundational skills and knowledge and employ them in new business environments.

CO6: Practice communication, problem solving and decision-making skills using appropriate technology and with the understanding of the business environment.

SEM -VI WEB TECHNOLOGIES (2022-23)

After the completion of the course, Students will be able to:

CO1: Explain the history of the internet and related internet concepts that are vital in understanding web development.

CO2: Discuss the insights of internet programming and implement complete application over the web. CO3: Demonstrate the important HTML tags for designing static pages and separate design from content using Cascading Style sheet.

CO4: Utilize the concepts of JavaScript and Java

CO5: Use web application development software tools i.e. Ajax, PHP and XML etc. and identify the environments currently available on the market to design web sites.

SEM -VI PHP WITH MySQL (DSE A) (2022-23)

After the completion of the course, Students will be able to

CO1: Learn Core-PHP, Server-Side Scripting Language.

CO2: Learn PHP-Database handling.

CO3: Learn different technologies used at client-Side Scripting Language.

CO4: Learn XML, CSS and XML parsers.

CO5: One PHP framework for effective design of web application.

CO6: Learn JavaScript to program the behavior of web pages.

CO7: Learn AJAX to make our application more dynamic. Design a commercial relational database system (Oracle, MySQL) by writing SQL using the system.

SEM -VI MAJOR PROJECT (DSE B) (2022-23)

CO1: Students should be able to design and construct a hardware and software system, component, or process to meet desired needs.

CO2: Students are provided to work on multidisciplinary Problems.

CO3: Students should be able to work as professionals, with portfolio ranging from data management, network configuration, designing hardware, database and software design to management and administration of entire systems.